Experimental Hydrodynamics of Fish Locomotion: Functional Insights from Wake Visualization1

نویسندگان

  • ELIOT G. DRUCKER
  • GEORGE V. LAUDER
چکیده

SYNOPSIS. Despite enormous progress during the last twenty years in understanding the mechanistic basis of aquatic animal propulsion—a task involving the construction of a substantial data base on patterns of fin and body kinematics and locomotor muscle function—there remains a key area in which biologists have little information: the relationship between propulsor activity and water movement in the wake. How is internal muscular force translated into external force exerted on the water? What is the pattern of fluid force production by different fish fins (e.g., pectoral, caudal, dorsal) and how does swimming force vary with speed and among species? These types of questions have received considerable attention in analyses of terrestrial locomotion where force output by limbs can be measured directly with force plates. But how can forces exerted by animals moving through fluid be measured? The advent of digital particle image velocimetry (DPIV) has provided an experimental hydrodynamic approach for quantifying the locomotor forces of freely moving animals in fluids, and has resulted in significant new insights into the mechanisms of fish propulsion. In this paper we present ten ‘‘lessons learned’’ from the application of DPIV to problems of fish locomotion over the last five years. (1) Three-dimensional DPIV analysis is critical for reconstructing wake geometry. (2) DPIV analysis reveals the orientation of locomotor reaction forces. (3) DPIV analysis allows calculation of the magnitude of locomotor forces. (4) Swimming speed can have a major impact on wake structure. (5) DPIV can reveal interspecific differences in vortex wake morphology. (6) DPIV analysis can provide new insights into the limits to locomotor performance. (7) DPIV demonstrates the functional versatility of fish fins. (8) DPIV reveals hydrodynamic force partitioning among fins. (9) DPIV shows that wake interaction among fins may enhance thrust production. (10) Experimental hydrodynamic analysis can provide insight into the functional significance of evolutionary variation in fin design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental hydrodynamics of fish locomotion: functional insights from wake visualization.

Despite enormous progress during the last twenty years in understanding the mechanistic basis of aquatic animal propulsion-a task involving the construction of a substantial data base on patterns of fin and body kinematics and locomotor muscle function-there remains a key area in which biologists have little information: the relationship between propulsor activity and water movement in the wake...

متن کامل

Learning from Fish: Kinematics and Experimental Hydrodynamics for Roboticists

Over the past 20 years, experimental analyses of the biomechanics of locomotion in fishes have generated a number of key findings that are relevant to the construction of biomimetic fish robots. In this paper, we present 16 results from recent experimental research on the mechanics, kinematics, fluid dynamics, and control of fish locomotion that summarize recent work on fish biomechanics. The f...

متن کامل

Simulation and optimization of live fish locomotion in a biomimetic robot fish

This paper presents simplified hydrodynamics model for a biomimetic robot fish based on quantitative morphological and kinematic parameters of crangiform fish. The motion of four Pangasius sanitwongsei with different length and swimming speed were recorded by the digital particle image velocimetry (DPIV) and image processing methods and optimal coefficients of the motion equations and appropria...

متن کامل

Hydrodynamic Performance of an Undulatory Robot: Functional Roles of the Body and Caudal Fin Locomotion

Both body undulation and caudal fin flapping play essential locomotive roles while a fish is swimming, but how these two affect the swimming performance and hydrodynamics of fish individually is yet to be known. We implemented a biomimetic robotic fish that travel along a servo towing system, which can be regarded as “treadmill” of the model. Hydrodynamics was studied a...

متن کامل

Kinematics and hydrodynamics of swimming in the mayfly larva.

The kinematics and hydrodynamics of free-swimming mayfly larvae (Chloeon dipterum) were investigated with the aid of a simple wake visualisation technique (tracer dyes) and drag measurements on dead insects. The basic swimming movement consists of a high-amplitude dorso-ventral undulation and, during continuous swimming, this produces a wake of ring vortices shed alternately to the dorsal and v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002